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Automated cloud and cloud shadow identification algorithms designed for Landsat Thematic Mapper (TM) and
Thematic Mapper Plus (ETM+) satellite images have greatly expanded the use of these Earth observation data
by providing a means of including only clear-view pixels in image analysis and efficient cloud-free compositing.
In an effort to extend these capabilities to Landsat Multispectal Scanner (MSS) imagery, we introduceMSS clear-
view-mask (MSScvm), an automated cloud and shadow identification algorithm forMSS imagery. The algorithm
is specific to the unique spectral characteristics of MSS data, relying on a simple, rule-based approach. Clouds are
identified based on green bandbrightness and the normalizeddifference between the green and red bands,while
cloud shadows are identified by near infrared band darkness and cloud projection. A digital elevation model is
incorporated to correct for topography-induced illumination variation and aid in identifying water. Based on
an accuracy assessment of 1981 points stratified by land cover and algorithmmask class for 12 images through-
out the United States, MSScvm achieved an overall accuracy of 84.0%. Omission of thin clouds and bright cloud
shadows constituted much of the error. Perennial ice and snow, misidentified as cloud, also contributed
disproportionally to algorithm error. Comparison against a corresponding assessment of the Fmask algorithm,
applied to coincident TM imagery, showed similar error patterns and a general reduction in accuracy commen-
surate with differences in the radiometric and spectral richness of the two sensors. MSScvm provides a suitable
automatedmethod for creating cloud and cloud shadowmasks forMSS imagery required for time series analyses
in temperate ecosystems.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The Landsat free and open data policy (Woodcock et al., 2008)
provided the opportunity to realize the full potential of Landsat's
unparalleled record of Earth observation data (Wulder, Masek, Cohen,
Loveland, & Woodcock, 2012). This accomplishment, along with
production and distribution of high quality standardized products by
Earth Resources Observation and Science Center (EROS) (Loveland &
Dwyer, 2012), has prompted development of powerful image process-
ing and change detection algorithms that take advantage of Landsat's
long record, high temporal dimensionality, and global coverage
(Griffiths et al., 2014; Hansen & Loveland, 2012; Hilker et al., 2009;
Huang et al., 2010; Kennedy, Yang, & Cohen, 2010; Kennedy et al.,
2012; Roy et al., 2010; Zhu & Woodcock, 2014a; Zhu, Woodcock, &
Olofsson, 2012). The benefit of these actions for landscape monitoring
and mapping at previously impractical temporal and spatial scales can-
not be overstated, and much credit is due to automated cloud masking,
which plays an essential role in the implementation of these algorithms.
raaten).
Clouds and their shadows block or reduce satellite sensors' view of
Earth surface features, obscuring spectral information characteristic of
clear-sky viewing. This spectral deviation from clear-sky view can
cause false change in a change detection analysis and conceals true
land cover, which can reduce the accuracy and information content of
map products where cloud-free images are not available. As a result,
cloud and cloud shadow identification and masking are important and
often necessary pre-processing steps. Development of automated
cloud and cloud shadow identification systems for Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapping Plus (ETM+) imagery
(Goodwin, Collett, Denham, Flood, & Tindall, 2013; Huang et al., 2010;
Hughes & Hayes, 2014; Irish, Barker, Goward, & Arvidson, 2006;
Oreopoulos, Wilson, & Várnai, 2011; Zhu & Woodcock, 2012; Zhu &
Woodcock, 2014b) have greatly relieved the costs of this traditionally
time-consuming manual process, largely facilitating the proliferation
and evolution of large volume Landsat data algorithms. However, no
automated cloud and cloud shadow identification algorithm exists for
LandsatMultispectral Scanner (MSS) imagery. The lack of such a system
stands as a significant barrier to incorporating MSS into current large
volume Landsat-based mapping and time series analysis efforts.

Including MSS as an integral data component in Landsat time
series analysis is important for both the Landsat program and the
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Table 1
Landsat MSS band designations. Landsat MSS band alias is used as the band identifier
throughout the text.

Landsat MSS
band alias

Landsat MSS 1–3
band label

Landsat MSS 4 & 5
band label

Wavelength
(μm)

B1 Band 4 Band 1 0.5–0.6
B2 Band 5 Band 2 0.6–0.7
B3 Band 6 Band 3 0.7–0.8
B4 Band 7 Band 4 0.8–1.1
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science it supports. MSS provides rich temporal context for the
current state of land use and land cover, which has been shown to in-
crease the accuracy of predicting forest structure (Pflugmacher,
Cohen, & Kennedy, 2012). Additionally, the extended temporal
record it provides, better tracks long-term Earth surface changes,
including forest dynamics, desertification, urbanization, glacier re-
cession, and coastal inundation. It also has the benefit of increasing
the observation frequency of cyclic and sporadic events, such as
drought, insect outbreaks, wildfire, and floods. Furthermore, utiliza-
tion of the full 42-plus years of Landsat imagery sets an example of
effectual resource use and supports the need for continuity of
Landsat missions to provide seamless spatial and temporal coverage
into the future. Without comprehensive inclusion of MSS data the
true power and benefit of the Landsat archive is not fully realized.

Recent and ongoing work promises to increase the capacity and
suitability of MSS imagery for efficient and robust integration with
TM, ETM+, and Operational Land Imager (OLI) (Gómez et al., 2011;
Lobo, Costa, & Novo, 2015). Continual improvements of georegistration
methods provide better spatial correspondence between coincident
pixels of varying dates, and hold the potential to increase the proportion
of analysis-ready images (Choate, Steinwand, & Rengarajan, 2012;
Devaraj & Shah, 2014). Improved radiometric calibration coefficients
developed by Helder et al., 2012 facilitate the future development of a
standard surface reflectance model, and application of common cross-
sensor spectral transformations (e.g., tasseled cap angle and NDVI)
have proved successful in spectral harmonization methods for time se-
ries analysis (Pflugmacher et al., 2012).

In an effort to build on these developments and further enhanceMSS
usability, we present an automated approach to cloud and cloud shad-
ow identification in MSS imagery. The algorithm, MSScvm (MSS clear-
view-mask), is designed for the unique properties of MSS data, relying
on a series of spectral tests on single band brightness and normalized
band differences to identify cloud, cloud shadow, and clear-view pixels.
It also incorporates a digital elevation model (DEM) and cloud projec-
tion to better separate cloud shadow from topographic shading and
water.

2. Methods

2.1. MSScvm background

Successful automated identification of clouds and cloud shadows in
imagery requires robust logic and fine tuning to minimize and balance
commission and omission errors. Current TM/ETM+methods generally
achieve this through a series of multi-spectral tests, relying collectively
on the full range of bands to identify a pixel's condition. Of particular
importance is the Thermal Infrared (TIR) band, which leverages the
characteristically cold temperature of clouds to separate them from
similarity bright and white land cover such as barren sand/soil, rock,
and impervious cover. TIR data are also used to identify cloud shadows
by cloud projection and dark object matching using cloud temperature
and adiabatic lapse rate to estimate cloud height, which is more
accurate than spectral tests alone (Zhu & Woodcock, 2012).

Although MSS and TM/ETM+ are of the same Landsat affiliation,
their spatial, spectral, and radiometric qualities differ, making applica-
tion of TM/ETM+systems difficult. By comparison,MSS ismissing spec-
tral representation from the blue, shortwave infrared (SWIR), and TIR
windows, and has a reduced 6-bit radiometric resolution (scaled to 8-
bit for distribution). These differences require that a new system be de-
veloped specifically for MSS data.

MSScvm is an automated rule-based algorithm for identifying
clouds, cloud shadows, and clear-view pixels in MSS imagery (see
Table 1 for a description of MSS spectral bands and the naming conven-
tion used throughout the text).

The input data are Landsat MSS Level 1 Product Generation System
(LPGS) images converted to top-of-atmosphere (TOA) reflectance
(Chander, Markham, & Helder, 2009) and a corresponding DEM. The
output is a binary raster mask with pixel values equal to one and zero,
representing assignment as clear-view and obscured, respectively.
This task is accomplishedwith five sequential steps: 1) cloud identifica-
tion, 2) water identification, 3) candidate cloud shadow identification,
4) candidate cloud projection, 5) final mask class assignment (Fig. 1).
In general, all algorithm decision rules were selected through a combi-
nation of trial and error and iterative optimization. We tested and se-
lected the threshold values using 67 training images from 20 scenes in
the western United States representing all five MSS sensors (Table 2).
We conducted an accuracy assessment of the algorithm to demonstrate
its utility and identify its strengths andweaknesses. An identical concur-
rent assessment of the widely used Fmask algorithm (Zhu &Woodcock,
2012), applied to coincident TM imagery, was conducted to provide a
comparative standard for the performance of MSScvm.

2.2. Cloud layer

Cloud identification is based on brightness in B1 and the normalized
difference between B1 and B2 (Fig. 1a), according to the following
spectral test (Eq. (1)).

Cloud test ¼ B1N0:175 and NDGRN0:0ð Þ or B1N0:39; ð1Þ

where

NDGR (B1 − B2)/(B1 + B2).

Pixels meeting these test criteria are classified as clouds. The first
part of Eq. (1) identifies pixels that are relatively bright in B1 and have
greater reflectance in B1 relative to B2. B1 pixels with TOA reflectance
greater than 0.175 are moderately bright and represent both clouds
and bright non-cloud features. Incorporating a positive NDGR value as
a qualifier in this test typically separates clouds from non-cloud fea-
tures. Occasionally, however, NDGR is not positive for very bright
clouds, in which case the simple brightness test of B1 TOA reflectance
values greater than 0.39 captures them. This threshold value is extreme-
ly bright and not often represented by non-cloud features except snow,
which is not explicitly separated in the algorithm because bright cloud
and snow are essentially spectrally indistinguishable in MSS data,
based on our observations during algorithm development.

B1 plays an important role in these tests. The shorter wavelengths
composing it are more sensitive to atmospheric scattering by cloud
vapor and aerosols than the longer wavelengths recorded in the other
bands (Chavez, 1988; Zhang, Guindon, & Cihlar, 2002). As a result,
clouds, haze, and aerosol appear brighter in B1 than the others bands,
making it a good simple brightness index, as well as a standard for rel-
ative band comparisons. B2 was selected as the contrasting band be-
cause initial evaluations showed that contrasts with B3 and B4 were
less consistent in their relationship to B1 than B2, especially for vegetat-
ed pixels, which spike in these cover types because of high near-infrared
scattering by green vegetation.

The high reflectivity of clouds in B1 and B2, however, can sometimes
cause radiometric saturation, resulting in false differences between the
bands, forcing NDGR values below the cloud-defining threshold.



Fig. 1.MSScvm algorithm schematic showing the inputs, logic, and workflow for the multi-step process.
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Karnieli, Ben-Dor, Bayarjargal, & Lugasi, 2004 suggest extrapolating the
values of saturated pixels based on linear regression with other bands,
but for our purpose, the simple B1 brightness test of B1 greater than
0.39 is sufficient to identify these affected pixels as cloud.

The cloud test produces a layer that contains a pattern of single and
small group pixels that represent noise and small non-cloud features. A
nine-pixel minimum connected component sieve is applied to eliminate
these pixels from the cloud layer. Finally, a two-pixel buffer (eight-neigh-
bor rule) is added to the remaining cloud features to capture the thin,
semi-transparent cloud-edge pixels. The spatial filter and buffer parame-
ters were determined by iterative trial and visual assessment with the
goal of optimizing commission and omission error balance for the test
scenes.
2.3. Water layer

A water layer dividing pixels between water and land is used to re-
duce the high rate of confusion between water and cloud shadows in
the algorithm (Fig. 1b). The layer is produced by the following logic
(Eq. (2)).

Water test ¼ NDVIb−0:085 and slopeb0:5; ð2Þ

where

NDVI (B4 − B2)/(B4 + B2),
slope topographic slope (degrees) derived from a DEM.



Table 2
Images used to build the MSScvm algorithm.

Platform WRS type Path/row Year Day Platform WRS type Path/row Year Day

Landsat 1 WRS-1 035/033 1972 214 Landsat 2 WRS-1 049/029 1977 192
Landsat 1 WRS-1 035/034 1972 214 Landsat 2 WRS-1 049/029 1977 210
Landsat 1 WRS-1 035/034 1973 244 Landsat 2 WRS-1 049/029 1978 187
Landsat 1 WRS-1 036/031 1973 191 Landsat 2 WRS-1 049/029 1979 236
Landsat 1 WRS-1 036/031 1974 204 Landsat 2 WRS-1 049/029 1981 225
Landsat 1 WRS-1 036/032 1973 245 Landsat 2 WRS-1 049/029 1981 243
Landsat 1 WRS-1 036/032 1974 204 Landsat 2 WRS-1 049/030 1975 185
Landsat 1 WRS-1 036/033 1972 233 Landsat 2 WRS-1 049/030 1976 198
Landsat 1 WRS-1 036/034 1973 245 Landsat 2 WRS-1 049/030 1976 234
Landsat 1 WRS-1 037/030 1974 205 Landsat 2 WRS-1 049/030 1978 187
Landsat 1 WRS-1 037/030 1974 241 Landsat 2 WRS-1 049/030 1979 236
Landsat 1 WRS-1 037/031 1972 234 Landsat 2 WRS-1 049/030 1980 213
Landsat 1 WRS-1 037/034 1974 223 Landsat 2 WRS-1 049/030 1981 225
Landsat 1 WRS-1 037/034 1974 241 Landsat 3 WRS-1 038/030 1978 203
Landsat 1 WRS-1 038/031 1972 235 Landsat 3 WRS-1 049/029 1979 227
Landsat 1 WRS-1 038/031 1974 224 Landsat 3 WRS-1 049/029 1982 211
Landsat 1 WRS-1 038/032 1972 235 Landsat 3 WRS-1 049/030 1982 211
Landsat 1 WRS-1 039/030 1972 218 Landsat 4 WRS-2 033/033 1989 243
Landsat 1 WRS-1 049/029 1974 181 Landsat 4 WRS-2 045/030 1983 199
Landsat 1 WRS-1 049/029 1974 217 Landsat 4 WRS-2 045/030 1983 247
Landsat 1 WRS-1 049/029 1975 212 Landsat 4 WRS-2 045/030 1989 231
Landsat 1 WRS-1 049/030 1974 181 Landsat 4 WRS-2 045/030 1992 192
Landsat 1 WRS-1 049/030 1974 199 Landsat 4 WRS-2 045/030 1992 224
Landsat 1 WRS-1 049/030 1974 235 Landsat 5 WRS-2 033/033 1985 192
Landsat 1 WRS-1 049/030 1974 253 Landsat 5 WRS-2 033/034 1985 208
Landsat 1 WRS-1 049/030 1976 207 Landsat 5 WRS-2 034/030 1988 192
Landsat 2 WRS-1 036/031 1978 246 Landsat 5 WRS-2 045/030 1984 242
Landsat 2 WRS-1 037/032 1978 211 Landsat 5 WRS-2 045/030 1985 180
Landsat 2 WRS-1 048/030 1975 202 Landsat 5 WRS-2 045/030 1986 199
Landsat 2 WRS-1 048/030 1977 173 Landsat 5 WRS-2 045/030 1986 215
Landsat 2 WRS-1 048/030 1978 222 Landsat 5 WRS-2 045/030 1990 178
Landsat 2 WRS-1 048/030 1981 242 Landsat 5 WRS-2 045/030 1990 226
Landsat 2 WRS-1 049/029 1975 185 Landsat 5 WRS-2 045/030 1992 200
Landsat 2 WRS-1 049/029 1976 234
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Pixels meeting the test criteria are flagged as water in the water
layer (WL). NDVI and slope are used as delineating indices because
NDVI has been demonstrated to be especially useful for separating
land and water (Zhu & Woodcock, 2012), and surface slope is a good
qualifier for exceptions to this rule, as water bodies are generally flat
at the 60 m resolution of MSS pixels. Zhu and Woodcock (2012) use
two tests of NDVI with values of 0.01 and 0.1 as water-defining thresh-
olds. Based on initial testingwe found that these valueswere too liberal,
even with the low-slope criteria, causing false positive water identifica-
tion.We found that an NDVI value less than−0.085with a topographic
slope less than 0.5° to be a good comprise between commission and
omission error for water identification.

The topographic slope layer was derived from Shuttle Radar Topogra-
phy Mission 30 m DEMs. The DEMs were downloaded from the Global
LandCover Facility (http://glcf.umd.edu/data/srtm/) as their 1-arc second
WRS-2 tile, Filled Finished-B product. For each MSS scene in this study,
several DEMs were mosaicked together and resampled to 60 m resolu-
tion to match the extent and resolution of the MSS images. Topographic
slope for each DEM was computed according to Horn (1981) using the
R (R Core Team, 2014) raster package (Hijmans, 2015) terrain function.

A six-pixel minimum connected component sieve is applied to the
water layer to eliminate single and small groups of pixels generally as-
sociated with non-water features. A two-pixel buffer (eight-neighbor
rule) is then applied to capture shore and near-shore pixels that have
both higher NDVI values and greater slope than central water body
pixels. Like the cloud layer, the spatial filter and buffer values were de-
termined by visual assessment with the goal of optimizing commission
and omission error balance for the test images.

2.4. Candidate cloud shadow layer

Candidate cloud shadow identification is based on low spectral
brightness in B4 (Fig. 1c). The near-infrared wavelengths composing
this band are well suited for taking advantage of the dark nature of
cloud shadows to separate them from other image features. Shadows
in B4 are particularly dark because diffuse illumination by atmospheric
scatter is lower in B4 than the other bands. However, a simple spectral
brightness test aimed at dark feature identification inevitably includes
topographic shadows, water, and other dark features, whichmust be re-
moved. Topographic shadows are eliminated by applying an illumina-
tion correction to B4, and water is removed using the previously
identified water layer. Additionally, in following steps (Sections 2.5
and 2.6), pixels identified as candidate cloud shadow are matched
against a liberal estimate of cloud projection to boost the probability
that candidate shadow-identified pixels are associated with clouds.

2.4.1. Topographic correction
In the first step of candidate cloud shadow identification, B4 is radio-

metrically corrected to remove topographic shading using theMinnaert
correction (Meyer, Itten, Kellenberger, Sandmeier, & Sandmeier, 1993;
Teillet, Guindon, & Goodenough, 1982). The correction is expressed as
follows (Eq. (3)).

LH ¼ LT cos θo= cos ið Þk; ð3Þ

where

LH B4 TOA reflectance observed for a horizontal surface,
LT B4 TOA reflectance observed over sloped terrain,
θo Sun's zenith angle,
i Sun's incidence angle in relation to the normal on a pixel, and
k Minnaert constant.

The cosine of i, is calculated by the R raster package hillshade func-
tion, using inputs: slope, aspect, sun elevation, and sun azimuth. The
slope and aspect variables are derived from DEMs described in

http://glcf.umd.edu/data/srtm/
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Section 2.3, while sun elevation, azimuth, and sun zenith angle are
fetched from image metadata. We selected the value 0.55 for k by
estimating the mean k across a range of slopes for near-infrared wave-
lengths represented by B4 (Ge et al., 2008).

2.4.2. B4 cloud shadow threshold calculation
After B4 is corrected for topographic shading (a layer now call B4c), a

shadow threshold value is derived from a linear model based on mean
B4c brightness of all non-cloud and provisionally-assigned cloud shad-
ow pixels in a given image. The threshold value is modeled to account
for inter-image differences in brightness as a result of varying
atmospheric conditions and other non-stationary effects. Initial testing
of a global threshold value showed inconsistency in commission and
omission error for candidate cloud shadows between images. Further
testing revealed that better constancy could be achieved through
modeling the value based on image brightness.

The implementedmodel was developed from observations of a qual-
ified image interpreter,who for the 67 test images (Table 2) identified an
appropriate B4c threshold value that separated cloud shadow fromother
dark land cover features. Specifically, B4c was iteratively classified into
shadow and non-shadow pixels based on a series of pre-defined thresh-
old values. At each iteration a mask was created and overlaid on a false
color representation of the image. The image analyst visually assessed
eachmask and selected the one that appeared to be the best compromise
between cloud shadow commission and omission error. The threshold
values corresponding to the best mask per image were then assessed
for their linear relationship with a series of image summary statistics
that describe the brightness of an image. Mean brightness of all clear-
view (non-cloud and provisionally-assigned cloud shadow) pixels pro-
duced the best results achieving an r-squared equal to 0.56 (Fig. 2).

The population of clear-view pixels is defined by exclusion of pixels
identified as cloud in the previously described cloud layer (Section 2.2),
and of provisionally-assigned cloud shadow pixels, which are identified
by a spectral test of B4c against a threshold value determined from the
mean of B4c excluding cloud pixels (Eq. (4)).

PCSL test ¼ B4cb 0:4 �MeanB4c1 þ 0:0248ð Þ; ð4Þ

where

MeanB4c1 mean(B4c ≠ cloud layer).

Pixels meeting the test criteria are designated as the provisional
cloud shadow layer (PCSL). The candidate cloud shadow layer (CCSL)
Fig. 2. Scatter plot and regression line (r2= 0.56 and n=67) for the relationship between
image mean brightness of MSS B4c (topographic-corrected TOA reflectance), excluding
cloud and provisionally-assigned cloud shadow pixels (x-axis), and analyst-defined MSS
B4c cloud shadow threshold values (y-axis).
is determined by a test of B4c mean against a threshold determined
from the mean of B4c excluding both the cloud layer (CL) and PCSL
followed by exclusion of water layer (WL) pixels (Eq. (5)).

CCSL ¼ B4cb 0:47 �MeanB4c2 þ 0:0073ð Þð Þ≠WL; ð5Þ

where

MeanB4c2 mean(B4c ≠ CL and B4c ≠ PCSL).

Pixels meeting these test criteria are flagged as candidate cloud
shadow pixels.
2.5. Candidate cloud projection layer

Within the candidate cloud shadow layer there is often commission
error contributed by wetlands and dark urban features. To reduce this
error, a candidate cloud projection layer is developed as a qualifier to
ensure pixels identified as candidate cloud shadow are associated
with clouds (Fig. 1d). Our method follows Luo, Trishchenko, and
Khlopenkov (2008) and Hughes and Hayes (2014), where a continuous
tract of cloud shadow pixels are cast from the cloud layer based on illu-
mination geometry and a range of cloud heights (Fig. 3). The intersec-
tion of the candidate cloud shadow layer and this candidate cloud
projection layer define cloud shadows. Similar approaches to incorpo-
rating spectral rules and cloud projection are used for TM/ETM+
(Huang, Thomas, et al., 2010; Zhu & Woodcock, 2012). However, these
examples take advantage of the thermal band to estimate cloud height,
which allows for a more precise estimate of cloud projection. In the ab-
sence of thermal data, an extended, continuous cloud projection field is
a computationally efficient alternative for MSS imagery.

The candidate cloud projection layer is created by applying a 15-pixel
buffer (900 m) to the previously described cloud layer (Section 2.2),
which is then stretched out opposite the sun's azimuth for a distance
equaling the projection of a range of cloud heights from 1 km to 7 km ac-
cording to the sun's zenith angle. Sun azimuth and zenith angle are re-
trieved from image metadata. The cloud height range represents the
typical elevations of low and medium height clouds. Higher clouds,
such as cirrus, were excluded from this range because thin, semi-
transparent cirrus clouds are often missed during cloud identification,
and such an extended cloud projection layer increases the likelihood of
cloud shadow commission error.
Fig. 3. Illustration of extended continuous tract cloud projection.



Table 3
Accuracy assessment point sample frequency among land cover and mask stratification
classes.

Clear Cloud
core

Cloud
edge

Shadow
core

Shadow
edge

Cover class
total

Barren 49 49 47 39 48 232
Developed 50 49 45 45 49 238
Forest 50 50 45 38 50 233
Herbaceous upland 48 48 46 39 49 230
Open water 49 50 48 46 49 242
Perennial ice/snow 0 50 48 0 0 98
Planted/cultivated 50 50 44 45 49 238
Shrubland 50 50 45 41 50 236
Wetlands 48 49 44 43 50 234
Mask class total 394 445 412 336 394 1981
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2.6. Final mask class assignment

The final step in the MSScvm algorithm is to aggregate the cloud
layer, candidate cloud shadow layer, and candidate cloud projection
layer into a single mask layer defining clear and obscured pixels
(Fig. 1e). First, cloud shadow pixels are identified by the intersection
of the candidate cloud shadow layer and the candidate cloud projection
layer. A nine-pixel minimum connected component sieve is applied to
these pixels to eliminate single and small groups of pixels generally as-
sociatedwith noise. A two-pixel buffer (8-neighbor rule) is added to the
remaining pixels to capture shadow from thin cloud edges. This final
cloud shadow layer is then merged with the cloud layer, where pixels
representing cloud or cloud shadow are assigned a value of 0 and all
other pixels a value of 1 to produce a clear-view mask.

2.7. Algorithm assessment

A point-based accuracy assessment of the MSScvm algorithm was
performed on a sample of images to determine error rate and source.
To provide context to the performance, the results were compared
against an accompanying assessment of the Fmask algorithm (Zhu &
Woodcock, 2012) applied to coincident TM images. In lieu of a compa-
rable MSS masking algorithm, Fmask served as a surrogate standard
from which to evaluate and discuss the accuracy of MSScvm. This is
possible because Landsat 4 and 5 carried both the MSS and TM sensor.
For a period of time, imagery was collected simultaneously by both
sensors, which provides an excellent dataset for comparing these two
algorithms, albeit operating on different data. The Fmask cloud and
cloud shadow masks used for comparison were versions provided
with the Landsat Surface Reflectance High Level Data Product available
through USGS EarthExplorer.

Twelve images from 12 scenes across the United States representing
awide range of cover types and cloud types were used (Fig. 4). MSScvm
was applied to each of the 12MSS images and Fmask to each of the cor-
responding 12 TM images. One thousand points were randomly select-
ed from within the extent of each image. The points were stratified by
nine land cover classes and five cloud and cloud shadow classes
(Table 3). Stratification by land cover provides information on error
Fig. 4. Distribution of Landsat scenes within the United States u
source, and stratification by cloud and shadow classes ensures equal
sample representation of mask classes. Land cover classes were defined
by the 1992 National Land Cover Database (NLCD) map (Vogelmann
et al., 2001). Cloud and cloud shadow classes including clear, core
cloud, cloud edge, core shadow, and shadow edge were based on
post-processing of the MSScvm masks. Cloud and cloud shadow edge
were respectively defined by an eight-pixel (480 m) region around
clouds and cloud shadows, with six pixels (360 m) to the outside and
two (120 m) inside. Core cloud and shadow were identified as cloud
and shadow pixels not equal to edge pixels, and clear, as not equal to
cloud/shadow edge or core pixels. These five mask classes were only
used for sample point stratification; their parent classes (cloud, cloud
shadow, and clear) were used for interpretation.

Sample pixels from each individual image were aggregated into a
large database from which a subset of 50 points per combination of
land cover and algorithm mask class were randomly selected. Points
falling very near the edge of either theMSS or TM imageswere removed
from the subset because of missing spectral data. Additionally, points
that represented confusion between cloud and cloud shadow in either
algorithm were also removed. This problem generally seemed to be
the result of cloud and cloud shadow buffers and mask class priority
in the assembly of the final mask classes. We did not want to penalize
the algorithms for this mistake, since they ultimately identified an
sed in the accuracy assessment of the MSScvm algorithm.



Fig. 5. Accuracy of MSScvm and Fmask cloud and cloud shadow identification algorithms for assessment points stratified by land cover class.
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obscuring feature, which is the objective. The sample size for each sam-
ple stratification class is shown in Table 3. Note that the perennial snow/
ice land cover class ismissing representation from the clear and shadow
mask classes. This is due to stratifying the point sample by the MSScvm
masks, where these combinations did not exist.

For each subset point location, a qualified image analyst determined
the condition of the intersecting pixel in the MSS image as cloud, cloud
shadow, or clear-view through visual interpretation. These features
were identified using elements of image interpretation including
color, cloud/shadow association, pattern, size, and texture. These refer-
ence data were compared against the MSScvm and Fmask algorithm
classification for the same points. To match the classes of MSScvm,
Fmask classes clear land, clear water, and snow were aggregated as
class clear, while cloud and cloud shadow remained unaltered. From
these data, a series of error matrixes were created to describe accuracy
and commission and omission error based on practices presented in
Congalton and Green (2009).

3. Accuracy assessment results

Overall accuracy of theMSScvmalgorithmwas 84.0%, being 2.6% less
accurate than Fmask (86.6%). Considering the differences in image in-
formation and algorithm complexity between MSS/MSScvm and TM/
Fmask, the accuracy is commensurate. Results by land cover class
(Fig. 5) shows that accuracy for perennial ice and snow was quite low,
with MSScvm being 37.8% accurate, and Fmask 45.9%. The other eight
classes, however, performed relatively well, ranging from 81.9% (bar-
ren) to 89.5% (developed) for MSScvm, and 85.2% (herbaceous/upland)
to 94.1% (developed) for Fmask.

Overall error stratified by mask class (clear, cloud, and shadow) dif-
fered slightly between the algorithms, but their commission and omis-
sion error balance was very similar (Fig. 6). MSScvm clear-view pixel
identification had the least error, followed by cloud shadow, and finally
clouds. By contrast, Fmask had lower error for clouds than shadows. The
greatest difference in overall error between the algorithmswas attribut-
ed to cloud identification. MSScvm had about 10% greater cloud
Fig. 6. Total percent commission and omission error for accuracy assessment of the MSScvm
omission error than Fmask, and about 5% greater commission error.
Conversely, MSScvm had less commission and omission error for the
cloud shadow class. Despite these differences, both algorithms showed
a greater commission to omission error ratio for cloud identification,
greater omission to commission error ratio for shadow identification,
and nearly balanced error for clear-view pixels.

Error stratified bymask class and land cover class shows that overall
error for each algorithm is driven by disproportionate confusion in just a
few classes, and that for many cover type and mask class combinations,
the algorithms perform almost equally (Fig. 7). As previously noted, pe-
rennial ice/snow was a major source of confusion for both algorithms,
producing high cloud and cloud shadow commission error, and high
clear omission error. For MSScvm, the error produced by perennial
ice/snow changed the overall algorithm error ratio between commis-
sion and omission by shifting otherwise greater cloud omission error
to greater commission error. Water was also responsible for an unusual
amount of error, particularity for MSScvm, where it caused high cloud
shadow commission error. Additionally, MSScvm had unusually high
cloud shadow commission error in developed cover and cloud commis-
sion and omission error in barren cover. Disregarding assessment points
representing snow/ice andwater, MSScvmwas generally biased toward
cloud and cloud shadow omission error, whereas Fmaskwas just slight-
ly biased toward greater cloud commission error and very near equal
error for cloud shadow and clear.

4. Discussion and conclusion

The accuracy assessment comparing MSScvm operating on MSS im-
agery and Fmask operating on coincident TM imagery demonstrates
that automated identification of clouds and cloud shadows in MSS im-
agery is feasiblewith accuracy at least proportionate to its data richness.
Given the differences in image information and algorithm complexity
between MSS/MSScvm and TM/Fmask, we consider their performance
and biases to be closely aligned. The accuracy of MSScvm is a result of
algorithm construction (training, logic, tuning, etc.) and the degree of
disparity between image features in the input data. However, based
and Fmask cloud and cloud shadow identification algorithms stratified by mask class.



Fig. 7. Total percent commission and omission error for accuracy assessment of theMSScvm and Fmask cloud and cloud shadow identification algorithms stratified bymask class and land
cover.
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on many tests of various spectral and contextual analyses, we believe
the limiting factor is the low radiometric and spectral depth of the imag-
ery. The high spectral variability of land cover, clouds, and cloud
shadows presents a classification challenge for the relatively low infor-
mation content ofMSS sensor data. The addition of a DEM to identify to-
pographic shadows and water, and application of cloud projection to
limit cloud shadow identification enhances the accuracy, but the fine
spectral boundary between thin semi-transparent clouds, their
shadows, and the land cover they obscure remains largely unresolved,
causing the majority of error in the MSScvm algorithm.

As evident in the examples of cloud and cloud shadow masks
displayed in Fig. 8, generally, thick clouds are well identified by
MSScvm, regardless of land cover type,with the exception of very bright
barren cover (Fig. 8b) and snow (Fig. 8c), where the algorithm falsely
identifies these pixels as cloud. Fmask also misidentifies snow as cloud
in Fig. 8c, but gets the bright barren cover correct in Fig. 8b, most likely
with the aid of the thermal band. The thermal band is also probably re-
sponsible for the greater accuracy of Fmask with regard to identifying
semi-transparent clouds, as represented in Fig. 8a and g. In these exam-
ples we see that MSScvm misses thin clouds, where Fmask captures
them. The increased cloud omission error and consequent clear-view
commission error of MSScvm for these clouds are a compromise for
lower overall clear-view omission error. If the cloud threshold rules
were relaxed to include these thin clouds, there would be an increase
in cloud commission error and clear-view omission error due to an in-
crease in erroneously masked bright non-cloud features.

With regard to cloud shadow, both algorithms are biased toward
omission error, where they incorrectly identify cloud shadows as
clear-view pixels. Both MSScvm and Fmask rely on dark object identifi-
cation coupled with cloud projection to assign pixels as cloud shadow.
In the case of Fmask, the thermal band and lapse rate are used to esti-
mate cloud base height, which combined with image metadata on sun
elevation and azimuth provide the information for a good approxima-
tion of where cloud shadows fall on the landscape. After cloud
projection, it performs a limited-areamovingwindow routine to identi-
fy the best object match between projected clouds and dark pixels
representing their shadows. Without a thermal band in MSS data,
MSScvm creates an elongated candidate cloud projection region that in-
corporates a wide range of cloud heights and calculates its intersection
with independently identified candidate cloud shadow pixels.
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BothMSScvm and Fmask cloud shadow identificationmethods pres-
ent classification problems. Fig. 8a shows that semi-transparent clouds
produce relatively bright shadows. These bright shadows are often
missed by MSScvm because they are brighter than the B4c cloud shad-
ow threshold. However, relaxing the threshold to include these bright
cloud shadow pixels would result in higher cloud shadow commission
error and clear-view omission error.We error on the side of consistency
in lower clear-view omission error, since bright cloud shadows are not
always present in a given image. Fmask, on the other hand, generally
identified bright cloud shadows very well, with the exception of cases
where it appears cloud height was misinterpreted and non-cloud
Fig. 8. Examplemasks produced byMSScvmalgorithmoperating onMSS imagery compared to
over a deciduous forest. b) Thick cumulus clouds over barren land. c) Cumulus clouds, mix
e) Cumulus clouds, pothole lakes, and mixed agriculture. f) Cumulus clouds and rangeland/gra
and deciduous cover.
shadow pixel werematched and incorrectly identified as cloud shadow,
or actual cloud shadow pixels were missed.

In another example of cloud shadow error, Fig. 8c shows that both al-
gorithms have misidentified snow as cloud. Fmask projects these
misidentified clouds and finds corresponding relatively dark pixels on
faintly illumination northwest facing slopes and incorrectly labels them
as cloud shadow. Conversely, since MSScvm does not perform object
matching and specifically eliminates topographic shading from the
pool of candidate cloud shadows, it does not identify shadows for these
falsely labeled clouds. The extended candidate cloud projection region
and candidate cloud shadow intersection method used by MSScvm has
Fmask applied to TM imagery for coincident dates by scene. a) Variable cloud transparency
ed vegetation, and snow. d) Cumulus clouds, water, and developed impervious cover.
ssland. g) Mixed cloud types, Pacific Northwest conifer forest. h) Water, coastal wetland,



Fig. 8 (continued).
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drawbacks though, as when dark pixels such as wetlands or some urban
environments are near pixels identified as cloud. The problem is evident
in Fig. 8d and h where candidate cloud projection regions from pixels
identified as clouds intersects pixels falsely identified as candidate clouds
shadow pixels, which produces false positive cloud shadows. In these
cases, cloud projection based on estimated cloud height and dark object
matching, implemented by Fmask, is more accurate.

Further testing of MSScvm is needed to fully understand the accura-
cy, but building a robust, global reference data source was beyond the
scope of this project. Ideally, future efforts to test MSScvm or improve
the methodology would use a spatially explicit, area-based reference
data set similar to that used by Hughes & Hayes, 2014; Irish et al.,
2006; Scaramuzza, Bouchard, & Dwyer, 2012; and Zhu & Woodcock,
2012, which consist of imagemasks developed throughmanual classifi-
cation that represent both hemispheres, a range latitudes, and all varia-
tion of land cover and cloud types. These reference data would provide
better accuracy assessment, as well as training data for machine learn-
ing algorithm construction, which could potentially improve semi-
transparent cloud identification.

MSScvm is scripted as anRpackage and is completely automated, only
requiring the input of prepared MSS images and corresponding LPGS
metadata files and DEMs. The mask output can be simply multiplied by
each band of a given image to set identified clouds and shadows to
value zero or flagged as NA. This provides efficient use in time series anal-
ysis and mapping by eliminating cloud and shadows from imagery. Used
in this context, the errors described in the results of the accuracy
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assessment can propagate in two ways. First, cloud and cloud shadow
omission error can result in false positive change in a change detection
analysis and misclassification in predictive mapping. Second, cloud and
shadowcommission error can cause false negative change in a change de-
tection analysis and eliminate affected pixels from inclusion in map pre-
diction. However, with regard to change detection, pixels representing
MSScvm omission errors are generally not significantly brighter or darker
than the same pixel under clear-view conditions, and therefore, may not
exceed a change detection threshold. Additionally, commission error can
be relieved by merging multiple cloud-masked images from the same
season to produce a near-cloud-free composite fromwhich spatially com-
prehensive predictive mapping can be achieved.

The motivation for development of MSScvm was to provide a means
of more easily incorporating MSS imagery in time series analysis with
TM, ETM+, and OLI imagery by automating the time-consuming task of
cloud and cloud shadow masking. The method presented is an initial ef-
fort to achieve this capability and offer a starting point to learn and ex-
pand from. Within the scope of North American temperate ecosystems,
it performs well with the exception of thin semi-transparent clouds,
their shadows, and snow/ice, as demonstrated in the accuracy assess-
ment. MSS imagery is an important historical land surface data source,
providing context for current conditions and offering rich temporal
depth for studying trends and patterns in Earth surface changes. Auto-
mated cloud and cloud shadow masking overcomes a major hurdle to
its effective use, however, we also identify the need for a robust MSS sur-
face reflectance model similar to LEDAPS and L8SR, and development of
spectral harmonization methods for cross-sensor time series analysis.
Completion of these taskswill greatly improve the ability to efficiently in-
clude MSS in time series analysis with its successors to leverage the un-
precedented 42-plus year Landsat archive for studying our dynamic
Earth environment.

Acknowledgments

The development and accuracy assessment of MSScvm were made
possible by the support of the Landscape Change Monitoring System
(LCMS) project funded by the USDA Forest Service and by NASA's Car-
bon Monitoring System program (NNH13AW62I). This work was also
highly dependent on the availability and easy access of free, high quality
Landsat image data provided by USGS EROS. Their open data policy
makes this work more relevant and widely useful. We would like to
thank Joe Hughes for inspiring the implementation of a cloud projection
technique, which greatly increased the algorithm's accuracy, and Dan
Steinwandwhoprovided valuable comments, citations, and perspective
on the history of Landsat data processing. Additionally, we thank three
anonymous reviewers for their helpful comments and suggestions.

References

Chander, G., Markham, B.L., & Helder, D.L. (2009). Summary of current radiometric cali-
bration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote
Sensing of Environment, 113(5), 893–903.

Chavez, P.S., Jr. (1988). An improved dark-object subtraction technique for atmospheric scat-
tering correction of multispectral data. Remote Sensing of Environment, 24, 459–479.

Choate, M., Steinwand, D., & Rengarajan, R. (2012).Multispectral Scanner (MSS) Geometric
Algorithm Description Document: USGS Landsat Project Documentation, LS-IAS-06.

Congalton, R.G., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Prin-
ciples and Practices. CRC Press.

Devaraj, C., & Shah, C.A. (2014). Automated Geometric Correction of LandsatMSS L1G Im-
agery. IEEE Geoscience and Remote Sensing Letters, 11, 347–351.

Ge, H., Lu, D., He, S., Xu, A., Zhou, G., & Du, H. (2008). Pixel-based Minnaert correction
method for reducing topographic effects on a Landsat 7 ETM+ image.
Photogrammetric Engineering & Remote Sensing, 74, 1343–1350.

Gómez, C., White, J.C., & Wulder, M.A. (2011). Characterizing the state and processes of
change in a dynamic forest environment using hierarchical spatio-temporal segmen-
tation. Remote Sensing of Environment, 115(7), 1665–1679.

Goodwin, N.R., Collett, L.J., Denham, R.J., Flood, N., & Tindall, D. (2013). Cloud and cloud
shadow screening across Queensland, Australia: an automated method for Landsat
TM/ETM+ time series. Remote Sensing of Environment, 134, 50–65.

Griffiths, P., Kuemmerle, T., Baumann, M., Radeloff, V.C., Abrudan, I.V., Lieskovsky, J., et al.
(2014). Forest disturbances, forest recovery, and changes in forest types across the
Carpathian ecoregion from 1985 to 2010 based on Landsat image composites.
Remote Sensing of Environment, 151, 72–88.

Hansen, M.C., & Loveland, T.R. (2012). A review of large area monitoring of land cover
change using Landsat data. Remote Sensing of Environment, 122, 66–74.

Helder, D.L., Karki, S., Bhatt, R., Micijevic, E., Aaron, D., & Jasinski, B. (2012). Radiometric
calibration of the Landsat MSS sensor series. IEEE Transactions on Geoscience and
Remote Sensing, 50, 2380–2399.

Hijmans, R.J. (2015). raster: Geographic data analysis and modeling. Retrieved from
http://CRAN.R-project.org/package=raster

Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., et al. (2009). A new
data fusion model for high spatial- and temporal-resolution mapping of forest distur-
bance based on Landsat and MODIS. Remote Sensing of Environment, 113, 1613–1627.

Horn, B.K. (1981). Hill shading and the reflectance map. Proceedings of the IEEE, 69, 14–47.
Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., & Vogelmann, J.E. (2010). An au-

tomated approach for reconstructing recent forest disturbance history using dense
Landsat time series stacks. Remote Sensing of Environment, 114, 183–198.

Huang, C., Thomas, N., Goward, S.N., Masek, J.G., Zhu, Z., Townshend, J.R.G., et al. (2010).
Automated masking of cloud and cloud shadow for forest change analysis using
Landsat images. International Journal of Remote Sensing, 31, 5449–5464.

Hughes, M., & Hayes, D. (2014). Automated detection of cloud and cloud shadow in
single-date Landsat imagery using neural networks and spatial post-processing.
Remote Sensing, 6, 4907–4926.

Irish, R.R., Barker, J.L., Goward, S.N., & Arvidson, T. (2006). Characterization of the Landsat-
7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric
Engineering & Remote Sensing, 72, 1179–1188.

Karnieli, A., Ben-Dor, E., Bayarjargal, Y., & Lugasi, R. (2004). Radiometric saturation of
Landsat-7 ETM+ data over the Negev Desert (Israel): problems and solutions.
International Journal of Applied Earth Observation and Geoinformation, 5, 219–237.

Kennedy, R.E., Yang, Z., & Cohen, W.B. (2010). Detecting trends in forest disturbance and
recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation
algorithms. Remote Sensing of Environment, 114, 2897–2910.

Kennedy, R.E., Yang, Z., Cohen, W.B., Pfaff, E., Braaten, J., & Nelson, P. (2012). Spatial and
temporal patterns of forest disturbance and regrowth within the area of the North-
west Forest Plan. Remote Sensing of Environment, 122, 117–133.

Lobo, F.L., Costa, M.P.F., & Novo, E.M.L.M. (2015). Time-series analysis of Landsat-MSS/TM/
OLI images over Amazonian waters impacted by gold mining activities. Remote
Sensing of Environment, 157, 170–184.

Loveland, T.R., & Dwyer, J.L. (2012). Landsat: Building a strong future. Remote Sensing of
Environment, 122, 22–29.

Luo, Y., Trishchenko, A., & Khlopenkov, K. (2008). Developing clear-sky, cloud and cloud
shadow mask for producing clear-sky composites at 250-meter spatial resolution
for the seven MODIS land bands over Canada and North America. Remote Sensing of
Environment, 112(12), 4167–4185.

Meyer, P., Itten, K.I., Kellenberger, T., Sandmeier, S., & Sandmeier, R. (1993). Radiometric
corrections of topographically induced effects on Landsat TM data in an alpine envi-
ronment. ISPRS Journal of Photogrammetry and Remote Sensing, 48, 17–28.

Oreopoulos, L., Wilson, M.J., & Várnai, T. (2011). Implementation on Landsat data of a sim-
ple cloud-mask algorithm developed for MODIS Land bands. IEEE Geoscience and
Remote Sensing Letters, 8, 597–601.

Pflugmacher, D., Cohen, W.B., & Kennedy, R.E. (2012). Using Landsat-derived disturbance
history (1972–2010) to predict current forest structure. Remote Sensing of
Environment, 122, 146–165.

R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing (Retrieved from http://www.R-
project.org/).

Roy, D.P., Ju, J., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., et al. (2010). Web-
enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the contermi-
nous United States. Remote Sensing of Environment, 114, 35–49.

Scaramuzza, P.L., Bouchard, M.A., & Dwyer, J.L. (2012). Development of the Landsat data
continuity mission cloud-cover assessment algorithms. IEEE Transactions on
Geoscience and Remote Sensing, 50(4), 1140–1154.

Teillet, P., Guindon, B., & Goodenough, D. (1982). On the slope-aspect correction of mul-
tispectral scanner data. Canadian Journal of Remote Sensing, 8, 84–106.

Vogelmann, J.E., Howard, S.M., Yang, L., Larson, C.R., Wylie, B.K., & Van Driel, N. (2001).
Completion of the 1990s National Land Cover Data Set for the conterminous United
States from Landsat Thematic Mapper data and ancillary data sources.
Photogrammetric Engineering and Remote Sensing, 67(6).

Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., et al.
(2008). Free access to Landsat imagery. Science (New York, NY), 320(5879), 1011.

Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., & Woodcock, C.E. (2012). Opening
the archive: how free data has enabled the science and monitoring promise of
Landsat. Remote Sensing of Environment, 122, 2–10.

Zhang, Y., Guindon, B., & Cihlar, J. (2002). An image transform to characterize and com-
pensate for spatial variations in thin cloud contamination of Landsat images.
Remote Sensing of Environment, 82, 173–187.

Zhu, Z., & Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in
Landsat imagery. Remote Sensing of Environment, 118, 83–94.

Zhu, Z., & Woodcock, C.E. (2014a). Continuous change detection and classification of land
cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171.

Zhu, Z., & Woodcock, C.E. (2014b). Automated cloud, cloud shadow, and snow detection
in multitemporal Landsat data: an algorithm designed specifically for monitoring
land cover change. Remote Sensing of Environment, 152, 217–234.

Zhu, Z., Woodcock, C.E., & Olofsson, P. (2012). Continuous monitoring of forest distur-
bance using all available Landsat imagery. Remote Sensing of Environment, 122, 75–91.

http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0005
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0005
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0005
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0005
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0010
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0010
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0015
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0015
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0020
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0020
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0025
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0025
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0030
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0030
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0030
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0030
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0035
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0035
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0035
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0040
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0040
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0040
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0040
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0045
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0045
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0045
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0050
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0050
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0055
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0055
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0055
http://CRAN.R-project.org/package=raster
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0060
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0060
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0060
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0190
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0070
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0070
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0070
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0065
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0065
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0075
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0075
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0075
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0080
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0080
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0080
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0080
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0085
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0085
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0085
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0085
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0090
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0090
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0090
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0095
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0095
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0095
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0195
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0195
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0195
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0105
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0105
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0110
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0110
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0110
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0110
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0115
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0115
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0115
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0120
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0120
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0120
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0125
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0125
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0125
http://www.R-project.org/
http://www.R-project.org/
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0135
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0135
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0135
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0135
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0140
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0140
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0140
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0145
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0145
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0150
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0150
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0150
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0205
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0155
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0155
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0155
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0160
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0160
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0160
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0165
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0165
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0175
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0175
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0180
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0180
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0180
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0170
http://refhub.elsevier.com/S0034-4257(15)30094-8/rf0170

	Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems
	1. Introduction
	2. Methods
	2.1. MSScvm background
	2.2. Cloud layer
	2.3. Water layer
	2.4. Candidate cloud shadow layer
	2.4.1. Topographic correction
	2.4.2. B4 cloud shadow threshold calculation

	2.5. Candidate cloud projection layer
	2.6. Final mask class assignment
	2.7. Algorithm assessment

	3. Accuracy assessment results
	4. Discussion and conclusion
	Acknowledgments
	References


